Arduino based Antenna Positioning System

Umesh Ghodke, K6VUG
South Bay Amateur Radio Association
Video Introduction
Presentation Overview

1. Mechanical Assembly
2. RC Servo Basics
3. Arduino Pro Mini Microcontroller
4. Programming The Arduino
5. Position Control Program
6. Hands On Demonstration
Close-up View
Mechanical Assembly

a) Azimuth Rotator
 - Housing for Servo
 - Mounts to tripod or mast
 - Rotates Elevation Rotor thru 180 degrees

b) Elevation Rotator
 - Housing for Servo
 - Mounts on top of Azimuth Rotor
 - Provides mounting for antenna etc.
 - Rotates antenna thru 180 degrees
RC Servo Overview

A Closed Loop Positioning System
RC Servo Specifications (typical)

- Rotation Angle – 180 degrees ***
- High Speed – 60 deg in 0.25 seconds
- Excellent Torque – 7.1 kg/cm
- Pulse Width – 1 to 2 microseconds
- Pulse Rate – 20 milliseconds
- Simple Power Requirements – 4.5 V, 1.2 A

Precision Angle Control by PWM signal
Small & Easy-to-use Package
360° Azimuth using Flip Mode

FLIP

Elevation 180 to 90

NORMAL

Elevation 0 to 90

Umesh Ghodke, K6VUG, SBARA
Arduin Microcontroller

- Popular & Easy to use Microcontroller Boards
- Efficient Interrupt-driven Architecture
- Pulse Width Modulation Feature Built-in ***

- Web Site www.arduino.cc
- Jump Start Instructions & Samples
- Free IDE Software for Development and Test
Arduino Specifications (typical)

- ATmega32x 16 MHz Microcontroller
- 32 KB Flash Memory (program storage)
- 2 KB SRAM (program execution)
- 1 KB EEPROM (data storage)
- 14 Digital I/O Pins (6 PWM outputs) ***
- 6 Analog Input Pins
- Operating Voltage 5V, 50mA
- USB or Serial Interface
- Includes Boot Loader (0.5 KB)
Arduino Uno & Pro Mini

Arduino Pro Mini – Embeds easily into a project
Writing A Software Program

1. Structure – The Solution
 a. Defines the Sequence of steps (Algorithm)
 b. Independent of Programming Language
 c. Provides Clarity to the Solution

2. Syntax – The Code
 a. Encodes Solution into Micro-Actions
 b. Completely Language Specific
 c. May provide ways to be Efficient
Arduino Program Structure

// Run Once After Reset
void setup () {
 initialization statements;
}

// Run Continuously Until Next Reset
void loop () {
 data processing statements;
}
#define pin 13; // specify the LED pin
void setup () {
 pinMode (pin, OUTPUT); // set the ‘pin’ as output
}
void loop () {
 digitalWrite (pin, HIGH); // turn LED pin on
 delay (1000); // pause for one second
 digitalWrite (pin, LOW); // turn LED pin off
 delay (1000); // pause for one second
}
More Sample Statements

// Using the Serial Port
Serial.begin(BAUDRATE); // initialize COM Port
inByte = Serial.read(); // read a byte

// Using the PWM Output
Servo AzServo; // initialize AZ pin
AzServo.attach(pin9, minPW, maxPW);
AzServo.write(curAzimuth); // turn the servo
Position Control Program Specs.

- Handle EasyComm II commands
- Generate PWM signals to accurately position Azimuth & Elevation Servos
- Provide full sweep using Flip Mode
- Provide a wide range speeds (1 to 50 rpm)
Control Program Structure

Initialize → Wait for Cmd

- AZ Cmd?
 - Y: Set New AZ Position *
 - N: System Cmd?
 - Y: Process Sys Cmd
 - N: EL Cmd?
 - Y: Set New EL Position *
 - N: System Cmd?
Commands Implemented

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VE</td>
<td>(display version)</td>
</tr>
<tr>
<td>AZ[nnn.n]</td>
<td>(0 – 360 degrees)</td>
</tr>
<tr>
<td>EL[nn.n]</td>
<td>(0 – 90 degrees)</td>
</tr>
<tr>
<td>HELP</td>
<td>(display this page)</td>
</tr>
<tr>
<td>SET</td>
<td>(display settings)</td>
</tr>
<tr>
<td>SET AZPW</td>
<td>ELPW [nnn nnnn]</td>
</tr>
<tr>
<td>SET SPEED [nn]</td>
<td>(1 - 50 rpm)</td>
</tr>
<tr>
<td>SET DEFAULTS</td>
<td>(load defaults)</td>
</tr>
</tbody>
</table>

(Audience Participation Demo !!!)
Summary

- High Utility & Fun DIY Project using Arduino
- Programming Complexity – ‘Intermediate’
- Works with any Software that supports EasyComm II - HRD Satellite, PC-Sat, etc.
- Simple Mechanical Parts
- Easily Portable & Quickly Setup
- Perfect for Light-weight Satellite Antennas!
Project Cost

- Arduino Pro Mini ~ $20
- RS232 Level Converter ~ $15
- Servos (x2) ~ $60
- Power Adapter 5V 1.5A DC ~ $15
- Plastic Sheets 8x10 inch (x2) ~ $2
- Hardware - Nuts and Bolts ~ $3
- DB9 Adapters & Phone Cable ~ $9
- Elbow Grease ~ Priceless!
References

- Arduino Web Site www.arduino.cc
- Arduino Project Ideas www.arduino.cc/playground/Projects/Ideas
- How RC Servos Work www.pcbheaven.com
- RC Store sheldonshobbies.com
- Tap Plastics Store www.tapplastics.com
Thank you!

Wishing you a fun time building Arduino & Amateur Radio projects!

Email Questions or Comments to k6vug@arrl.net
The End
Arduino Boot Loader

- Activated by Reset
- Completes basic checks
- Transfers control to the custom uploaded program

- Makes it very easy to upload & run new programs
EasyComm II Protocol

- Specifies Commands to Control Rotator, Radio, etc.
- Simple Text Command Format
 - Example: AZ123.0 EL45.0
- Commands can be spaced out in one line
- New commands override previous commands – helps rapid change in movement
Pulse Width Modulation

Pulse Width: 1mS

Pulse Width: 3mS

Pulse Width: 8mS

Pulse Rate: 20mS
PWM Drive in RC Servos

- Smart way to transmit analog signals over long distances
- Excellent tolerance to electrical noise and attenuation
- Simple algorithm converts a range of analog values to a range of pulse widths
- Simple electronics at the receiving end reconstructs the analog signal